skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shepherd, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Abstract A digital map of the built environment is useful for a range of economic, emergency response, and urban planning exercises such as helping find places in app driven interfaces, helping emergency managers know what locations might be impacted by a flood or fire, and helping city planners proactively identify vulnerabilities and plan for how a city is growing. Since its inception in 2004, OpenStreetMap (OSM) sets the benchmark for open geospatial data and has become a key player in the public, research, and corporate realms. Following the foundations laid by OSM, several open geospatial products describing the built environment have blossomed including the Microsoft USA building footprint layer and the OpenAddress project. Each of these products use different data collection methods ranging from public contributions to artificial intelligence, and if taken together, could provide a comprehensive description of the built environment. Yet, these projects are still siloed, and their variety makes integration and interoperability a major challenge. Here, we document an approach for merging data from these three major open building datasets and outline a workflow that is scalable to the continental United States (CONUS). We show how the results can be structured as a knowledge graph over which machine learning models are built. These models can help propagate and complete unknown quantities that can then be leveraged in disaster management. 
    more » « less
  4. Abstract Introduced in 2016, the FAIR Guiding Principles endeavour to significantly improve the process of today's data‐driven research. The Principles present a concise set of fundamental concepts that can facilitate the findability, accessibility, interoperability and reuse (FAIR) of digital research objects by both machines and human beings. The emergence of FAIR has initiated a flurry of activity within the broader data publication community, yet the principles are still not fully understood by many community stakeholders. This has led to challenges such as misinterpretation and co‐opted use, along with persistent gaps in current data publication culture, practices and infrastructure that need to be addressed to achieve a FAIR data end‐state. This paper presents an overview of the practices and perspectives related to the FAIR Principles within the Geosciences and offers discussion on the value of the principles in the larger context of what they are trying to achieve. The authors of this article recommend using the principles as a tool to bring awareness to the types of actions that can improve the practice of data publication to meet the needs of all data consumers. FAIR Guiding Principles should be interpreted as an aspirational guide to focus behaviours that lead towards a more FAIR data environment. The intentional discussions and incremental changes that bring us closer to these aspirations provide the best value to our community as we build the capacity that will support and facilitate new discovery of earth systems. 
    more » « less